Correcting mutations in vitro using CRISPR-Cas9; towards autologous stem cell transplantation in sickle cell disease and X-linked severe combined immunodeficiency

Published: 04-04-2016 Last updated: 17-04-2024

Preparation for in vivo correction of SCD and X-SCID causing mutations by CRISPR-Cas9 by in vitro studies in cell lines

Ethical reviewApproved WMOStatusRecruitment stoppedHealth condition typeRed blood cell disordersStudy typeObservational invasive

Summary

ID

NL-OMON43429

Source

ToetsingOnline

Brief title

Correcting SCD and X-SCID causing mutations in vitro using CRISPR-Cas9

Condition

- Red blood cell disorders
- Immune system disorders congenital

Synonym

n.v.t.

Research involving

Human

Sponsors and support

Primary sponsor: Academisch Medisch Centrum

Source(s) of monetary or material Support: Ministerie van OC&W

Intervention

Keyword: CRISPR-CAS9, in vitro, sickle cell disease, X-linked severe combined

immunodeficiency

Outcome measures

Primary outcome

Percentage of cells in which the SCD or X-SCID causing mutations are corrected

without detectable mutations in other genes

Secondary outcome

n.a.

Study description

Background summary

Sickle cell disease (SCD) and X-linked severe combined immunodeficiency (X-SCID) are both Mendelian, life threatening diseases that can only be cured by an allogeneic hematopoietic stem cell transplantation (HSCT). Gene editing would enable patients to receive an autologous instead of an allogeneic transplantation, with a concomitant reduction in morbidity and mortality.

Study objective

Preparation for in vivo correction of SCD and X-SCID causing mutations by CRISPR-Cas9 by in vitro studies in cell lines

Study design

Observational study with invasive measurements

Study burden and risks

The risk and burden associated with a single skin biopsy are negligible,

2 - Correcting mutations in vitro using CRISPR-Cas9; towards autologous stem cell tr ... 2-05-2025

especially when taken during surgery using the surgical incision that already needs to be made for clinical care reasons. Gene editing would enable patients to receive an autologous instead of an allogeneic HSCT in the future, which may yield a group benefit.

Contacts

Public

Academisch Medisch Centrum

Meibergdreef 9 Amsterdam 1105 AZ NI

Scientific

Academisch Medisch Centrum

Meibergdreef 9 Amsterdam 1105 AZ NL

Trial sites

Listed location countries

Netherlands

Eligibility criteria

Age

Adolescents (12-15 years) Adolescents (16-17 years) Adults (18-64 years) Children (2-11 years) Elderly (65 years and older)

Inclusion criteria

- 1. Presence of either SCD or X-SCID
- 2. For children: availability of an existing cell line or a planned surgical intervention for patient care reasons
 - 3 Correcting mutations in vitro using CRISPR-Cas9; towards autologous stem cell tr ... 2-05-2025

3. Able to provide written permission

Exclusion criteria

none

Study design

Design

Study type: Observational invasive

Masking: Open (masking not used)

Control: Uncontrolled

Primary purpose: Treatment

Recruitment

NL

Recruitment status: Recruitment stopped

Start date (anticipated): 04-05-2016

Enrollment: 6

Type: Actual

Ethics review

Approved WMO

Date: 04-04-2016

Application type: First submission

Review commission: METC Amsterdam UMC

Approved WMO

Date: 09-12-2016

Application type: Amendment

Review commission: METC Amsterdam UMC

Study registrations

Followed up by the following (possibly more current) registration

No registrations found.

Other (possibly less up-to-date) registrations in this register

No registrations found.

In other registers

Register ID

CCMO NL56205.018.16